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Abstract. The Λ(1520)-resonance has been recently studied in a unitarized coupled-channel formalism
with πΣ(1385), KΞ(1530), K̄N and πΣ as constituents blocks. We provide a theoretical study of the
predictions of this model in physical observables of the pp→ pK+K−p and pp→ pK+π0π0Λ reactions. In
particular, we show that the ratio between the π0π0Λ and K−p mass distributions can provide valuable
information on the ratio of the couplings of the Λ(1520)-resonance to πΣ(1385) and K̄N than the theory
predicts. Calculations are done for energies which are accessible in an experimental facility like COSY at
Jülich or the developing CSR facility at Lanzhou.

PACS. 14.20.-c Baryons (including antiparticles) – 13.75.-n Hadron-induced low- and intermediate-energy
reactions and scattering

1 Introduction

The low-lying negative-parity resonances JP = 1/2−,
3/2− have recently attracted much attention as many
of them can qualify as dynamically generated resonances
from the interaction of mesons and baryons. In particular,
much progress has been done interpreting the low-lying
1/2− resonances as dynamically generated from the inter-
action of the octet of pseudoscalar mesons with the octet
of stable baryons [1–6] which allows one to make predic-
tions for resonance formation in different reactions [7].
One of the surprises on this issue was the realization
that the Λ(1405)-resonance is actually a superposition
of two states, a wide one coupling mostly to πΣ and a
narrow one coupling mostly to K̄N [4,8,9]. The perfor-
mance of a recent experiment on the K−p → π0π0Σ0

reaction [10] and comparison with older ones, particu-
larly the π−p → K0πΣ reaction [11], has brought evi-
dence on the existence of these two Λ(1405) states [12].
Extension of these works to the interaction of the octet
of pseudoscalar mesons with the decuplet of baryons has
led to the conclusion that the low-lying 3/2− baryons
are mostly dynamically generated objects [13,14]. One of
these states is the Λ(1520)-resonance which was generated
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from the interaction of the coupled channels πΣ(1385) and
KΞ(1530). From the experimental point of view this res-
onance is of particular interest in searches of pentaquarks
in photononuclear reactions [15,16] in γp→ K+K−p and
γd → K+K−np. Since getting signals for pentaquarks
involves cuts in the spectrum and subtraction of back-
grounds, the understanding of the resonance properties
and the strength of different reactions in the neighbor-
hood of the peak becomes important in view of a correct
interpretation of invariant mass spectra when cuts and
background subtractions are made. From the theoretical
point of view, in the studies of refs. [13,14], the Λ(1520) is
build up from the πΣ(1385) and KΞ(1530) and couples
mostly to the first channel, to the point that, in this pic-
ture, the state would qualify as a quasibound πΣ∗ state.
Indeed, the nominal mass of the Λ(1520) is a few MeV be-
low the average of the πΣ∗ mass. However, the PDG [17]
gives a width of 15MeV for the Λ(1520), with branching
ratios of 45% into K̄N and 43% into πΣ, and only a small
branching ratio of the order of 4% for πΣ∗ which could be
of the order of 10% according to some analysis [18] which
claims that about 85% of the decay into ππΛ is actually
πΣ∗. The association of ππΛ to πΣ∗ in the peak of the
Λ(1520) is a non-trivial test since one has no phase space
for πΣ∗ excitation and only the width of the Σ∗ allows
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for this decay, hence precluding the reconstruction of the
Σ∗ resonant shape from the πΛ decay product.

One step forward in the understanding of the Λ(1520)-
resonance has been possible thanks to a recent reaction
K−p→ π0π0Λ, experimentally performed in ref. [19] and
theoretically studied in refs. [20,21]. The reaction proceeds
mostly via K−p → π0(Σ∗0) → π0(π0Λ). This is seen at
energies of the K− such that

√
s > Mπ0Σ∗0 , where the re-

construction of the π0Λ invariant mass produces the Σ∗0

resonance shape [10,20]. However, at energies of the K−

where
√
s ' MΛ(1520), the Σ

∗0 is only produced through
the tail of the resonance. Yet, a formalism using explic-
itly the Σ∗0 propagator allows us to study properly the
K−p→ π0π0Λ reaction assuming the same π0Σ∗0 as the
dominant mechanism.

On the other hand, the large branching ratios to K̄N
and πΣ, of the order of 90% together, indicate that the
K̄N and πΣ channels must play a relevant role in build-
ing up the Λ(1520)-resonance. In the work of refs. [20,21]
this problem was tackled by performing a coupled-channel
analysis of the Λ(1520) data with πΣ∗,KΞ∗, K̄N and πΣ,
the first two channels interacting in s-wave and the last
two channels in d-wave to match the 3/2− spin and parity
of the Λ(1520)-resonance. In ref. [21] it was also shown
that although the πΣ∗ remains with the largest coupling
to Λ(1520), its strength is reduced with respect to the sim-
pler picture of only πΣ∗ building up the resonance, and
at the same time there is a substantial coupling to K̄N
and πΣ which distorts the original πΣ∗ quasibound pic-
ture and makes the K̄N and πΣ channels relevant in the
interpretation of different reactions.

In the present work we propose two reactions to
test the non-trivial predictions of the unitarized coupled-
channel model of ref. [21] regarding the couplings of the
Λ(1520)-resonance to the different channels. These reac-
tions are pp → pK+K−p and pp → pK+π0π0Λ close
to the Λ(1520) threshold. Particularly, we show that a
measurement of the ratio between the π0π0Λ and K−p
mass distributions for pp → pK+π0π0Λ and pp →
pK+K−p reactions, respectively, is an excellent model-
independent test of the ratio between the Λ(1520) cou-
pling to πΣ(1385) and to K̄N .

The structure of the paper is as follows. In sect. 2 the
unitarized coupled-channel model of ref. [21] is summa-
rized. In sect. 3 the dominant mechanism to produce the
Λ(1520) in p-induced reactions and the implementation of
the unitarized coupled-channel model into it is described.
Finally, in sect. 4 we show the results for the mass distri-
butions in the two reactions studied.

2 Summary of the unitarized coupled-channel

formalism

In ref. [21] the Λ(1520)-resonance was studied within a
coupled-channel formalism including the πΣ∗, KΞ∗ in s-
wave and the K̄N and πΣ in d-waves. Unitarity was im-
plemented by means of the Bethe-Salpeter (BS) equation
in the evaluation of the different scattering amplitudes,

Table 1. Loop subtraction constants and parameters of the
potentials. The γ13 and γ14 are given in units of GeV−3 and
γ33, γ44 and γ34 in units of GeV−5.

a0 a2 γ13 γ14 γ33 γ44 γ34

−1.8 −8.1 98 110 −1730 −730 −1108

which reads

T = V + V GT ⇒ T = [1− V G]−1V. (1)

The kernel of the BS equation is given by the following
transition potentials [21]:

V =

∣

∣

∣

∣

∣

∣

∣

∣

C11(k
0
1 + k01) C12(k

0
1 + k02) γ13 q

2
3 γ14 q

2
4

C21(k
0
2 + k01) C22(k

0
2 + k02) 0 0

γ13 q
2
3 0 γ33 q

4
3 γ34 q

2
3 q

2
4

γ14 q
2
4 0 γ34 q

2
3 q

2
4 γ44 q

4
4

∣

∣

∣

∣

∣

∣

∣

∣

, (2)

where the elements 1, 2, 3 and 4 denote πΣ∗, KΞ∗, K̄N
and πΣ channels, respectively. In eq. (2),

qi =
1

2
√
s

√

[s− (Mi +mi)2][s− (Mi −mi)2], (3)

k0i =
s−M2

i +m
2
i

2
√
s

and Mi(mi) is the baryon (meson) mass.

The coefficients Cij are C11 = −1
f2 , C21 = C12 =

√
6

4f2 and

C22 = −3
4f2 , where f is 1.15fπ, with fπ (= 93MeV) the

pion decay constant, which is an average between fπ and
fK as was used in ref. [2] in the related problem of the
dynamical generation of the Λ(1405). In eq. (1) G stands
for a diagonal matrix containing the loop functions in-
volving a baryon and a meson which are regularized by
means of two subtraction constants [21]: one for the s-
wave channels (a0) and another one for the d-wave chan-
nels (a2). The treatment of eqs. (1) in refs. [20,21] relies
upon a dispersion relation on T−1 which allows the on-
shell factorization out of the loops of the kernel, V , of the
Bethe-Salpeter equation [2,22]. The matrix elements V11,
V12, V21 and V22 come from the lowest-order chiral La-
grangian involving the decuplet of baryons and the octet
of pseudoscalar mesons, as discussed in refs. [23,13,14].
The unknown parameters in the V -matrix, as well as the
subtraction constants of the loop functions, were obtained
by a fit to K̄N → K̄N and K̄N → πΣ partial-wave am-
plitudes. The values obtained are shown in table 1 [21].
Despite the apparent large number of parameters, it is
worth mentioning that the dominant potentials are V11,
V12, V21 and V22 which have no freedom. Let us recall that
we do not include πΣ∗ amplitudes in our fit. Hence, the
amplitudes involving this channel are genuine predictions
of the theory and are shown in fig. 1.

From the scattering amplitudes we can also extract the
effective couplings of the Λ(1520) to all the different chan-
nels, which can be obtained via an analytic continuation
of the amplitude in the complex plane. Near the pole we
may write up to regular terms

Tij(
√
s) =

gigj√
s−MΛ(1520) + iΓΛ(1520)/2

(4)
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Fig. 1. Unitary amplitudes involving the πΣ∗ channel. From
left to right: πΣ∗ → πΣ∗, πΣ∗ → K̄N and πΣ∗ → πΣ.

Table 2. Couplings of the Λ(1520)-resonance to the different
channels.

g1 g2 g3 g4

0.91 −0.29 −0.54 −0.45

from where we have

gigj = −
ΓΛ(1520)

2

|Tij(MΛ(1520))|2
Im[Tij(MΛ(1520))]

, (5)

where MΛ(1520) is the position of the peak in |Tij |2 and
ΓΛ(1520) = 15.6MeV. The couplings obtained are shown
in table 2.

3 Proton-induced Λ(1520) production

The amplitudes involving πΣ∗ channels can be investi-
gated in particular in those reactions where this chan-
nel plays a significant role. In ref. [21], these amplitudes
were checked in the K−p → Λππ, γp → K+K−p, γp →
K+π0π0Λ and π−p → K0K−p reactions, leading to a
good reproduction to the experimental results.

In the present work we apply the model to the
pp → pK+(Λ(1520)) → pK+(π0π0Λ) and pp →
pK+(Λ(1520)) → pK+(K−p) reactions at energies
slightly above the Λ(1520) production threshold, which
are attainable at a facility like COSY [24,25].

As explained in appendix B, only a single partial wave,
with the initial pp pair in the 1D2

1, contributes to the
process pp → K+pΛ(1520) near threshold under the as-
sumption that the Λ(1520)KN system in the intermedi-
ate state is in an s-wave in all subsystems. In addition,
since the production is characterized by a large momen-
tum transfer, we can assume the production operator to be

1 Here we use the standard notation for the NN partial
waves: 2S+1LJ , with S, L, J for the total spin, the angular
momentum and the total angular momentum.

(largely) independent of the final momenta, that are con-
strained to small values because of the chosen kinematics.
Thus the only significant source of an energy or momen-
tum dependence with respect to the final particles should
be their various final-state interactions. Therefore, to de-
duce information on the final-state interactions in large
momentum transfer reactions, no detailed knowledge of
the production operator is necessary (for a recent review
on these issues we refer to ref. [26] and references therein).

There are various ways to derive the relevant matrix
elements. The one most commonly used is based on the
irreducible tensor techniques and the corresponding for-
mulas are given in appendix B. Here on the main text,
on the other hand, we will describe a method for the con-
struction of matrix elements that is more transparent and
allows us to easier explain the relevant physics. Needless
to say that the final results in the two approaches are
identical.

According to the selection rules given above the tran-
sition pp→ Λ(1520)Kp can be parameterized by a single
constant C and a fixed operator structure which reads for
non-relativistic final states

W = C
(

(u†
Λ(1520) · p)(σ · p)σ2u

∗
p

)

φK
(

uTp σ2up
)

, (6)

where uΛ and up denote the spinors for the Λ(1520) as well
as the nucleons. Note, by construction σ·uΛ(1520) vanishes.
It is this identity that ensures that it is only the pp D-wave
that contributes to the above transition operator. For the
initial momentum we use p, and σ denotes the standard
three-vector of Pauli matrices. In the expressions below
we will omit the spinors from the initial state to simplify
notations.

To come to the corresponding expressions for the full
transitions —including the decay of the Λ(1520)— we
need to contract the transition operator W with further
operators, namely the spin transition operator S normal-
ized as

SiS
†
j =

1

3
(2δij − iεijkσk) ,

as it occurs in the non-relativistic version of the Rarita-
Schwinger propagator, as well as the relevant vertices and
propagators. As a result for the decay matrix element for
the chain

pp→ K+pΛ(1520)→ K+p(π0Σ∗ 0)→ K+p(π0[Λπ0])

we need to replace u
†
Λ(1520) i in eq. (6) by

Γππ = − 1√
3
g1
fΣ∗πΛ

mπ
ūΛ(p3)(S · p1)S

†
iGΛ∗(sΛ∗)GΣ∗(s1Σ∗),

where we used for the transition Λ(1520) → Σ∗π a con-
stant matrix element and for Σ∗ → Λπ the standard ver-
tex S · p1. In the above expression −g1/

√
3 is the effec-

tive coupling for Λ∗ → π0Σ∗ 0 including the isospin fac-
tor. Here GΛ∗ denotes the propagator of the Λ(1520), im-
plicit in the dashed circle in fig. 2, which is a function of
sΛ∗ = (p1 + p2 + p3)

2. GΣ∗ is the propagator of the Σ∗
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Fig. 2. Mechanism considered for pp → pK+(Λ(1520)) →
pK+(π0π0Λ).

being a function of s1Σ∗ = (p2 + p3)
2, where we use the

standard Flatte parametrization

GΣ∗(sΣ∗) =
1√

sΣ∗ −MΣ∗ + iΓΣ∗(
√
sΣ∗)/2

.

Note, to make contact with the T -matrices derived in the
previous section we need to replace g1GΛ∗ by the corre-
sponding channel T -matrix. We come back to this below.

After some algebra we get for the complete matrix el-
ement in the ππΛ channel

AππΛ(p1, p2) = −
Cg1√

3

fΣ∗πΛ

mπ
GΛ∗(sΛ∗)ūΛ(p3)σiσ2u

∗(p5)

×
{

P(p1)iGΣ∗(s1Σ∗) + P(p2)iGΣ∗(s2Σ∗)
}

, (7)

where P(k)i = (k · p)pi − 1
3p

2ki projects on the initial
D-wave, as already explained above. One observes that
the Λp system in the final state occurs solely in the spin
triplet in line with the findings of appendix B.

On the other hand, for the reaction chain

pp→ K+pΛ(1520)→ K+p(K−p)

we need to replace u
†
Λ(1520) i in eq. (6) by

ΓK = − 1√
2
g3ū(p1)(σ · p3)(S · p3)S

†
i . (8)

We get after some standard manipulations

AKp(p1, p2) = −
1√
2
Cg3 {ū(p1)σ2u(p2)(P(p3) · p3)

× (GΛ∗(s1) +GΛ∗(s2))

+iū(p1)σkσ2u(p2)(p3 × p)k(p3 · p)
× (GΛ∗(s1)−GΛ∗(s2))} . (9)

Here the first term contains the two-proton system in a
spin singlet state (e.g., 1S0), whereas the second term con-
tains the pp system in a spin triplet state. The second term
implies L = odd for the two protons. However, as ex-
plained in appendix B, the energies of the proton are such
that only L = 0 is relevant. In addition, GΛ∗(s1)−GΛ∗(s2)
is much smaller than the sum. Therefore, we will only in-
clude the first term in what follows.
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Fig. 3. Mechanism considered for pp → pK+(Λ(1520)) →
pK+(K−p).

As long as we study ratios only, the only unknown
in the above expressions, C, drops out and all distribu-
tions turn out to be predictions of the model. However, to
make contact between the coupled-channel T -matrices of
the previous section and the expressions just derived we
use a particular production mechanism as shown in figs. 2
and 3. Thus the transition operator parameterized as C
contains —in this model— the KKN̄N vertex, where the
outgoing K+ is produced, as well as a K̄p vertex on the
other nucleon. We may thus pull the latter out of the def-
inition of C and write

− 1√
2
C̃g3 = C.

With this definition it is straight forward to show that

C̃ =
1

2f2
(p04 − k0)

1

k2 −m2
k

(10)

for the transition operator and

(g1)GΛ(1520)

(

g3p
2

√
3

)

= TK̄N→πΣ∗ , (11)

(

g3p
2
3√
3

)

GΛ(1520)

(

g3p
2

√
3

)

= TK̄N→K̄N (12)

for the meson-baryon T -matrices. This completes the eval-
uation of the production matrix elements.

By the described method the antisymmetrization of
the two-proton states has already been taken into account
since only allowed partial wave were considered. The sym-
metrization of the two identical π0 has to be considered
by adding the contribution obtained by changing p1 ↔ p2
(see details in appendix B). Hence, |Amp|2 to be used in
the cross-section (c.f. eq. (A.2) in the appendix) is given by

|Amp|2 =
∑

Sz

|AππΛ(p1, p2) +AππΛ(p2, p1)|2 . (13)

For the calculation of the cross-sections one has to eval-
uate a four- and five-body phase space. The method we
used is given in detail in appendix A.

Since we have two baryons in the final state which are
different for each reaction, the different modification of the
cross-section due to the final-state interaction (FSI) of the
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ΛN or pp subsystem can be relevant. We have taken this
into account by means of the ordinary factor, equivalent
to the inverse of the Jost function2. For the Λp interaction
we use [29] for the factor that multiplies |T |2 in the phase
space

|CFSI |2 =
q2 + β2

q2 + α2
(14)

with

α = (1−
√

1− 2r/a)/r, β = (1 +
√

1− 2r/a)/r (15)

and q the Λ momentum in the pΛ rest frame. In eq. (15),
a and r are the scattering length and effective range of
the s-wave Λp amplitude in S = 1 which is the state we
have. In the calculations we use a = (−1.4 ± 0.5) fm and
r = (4 ± 1) fm and we shall estimate the uncertainties
induced from these errors.

For the pp final-state interaction in the pp→ pK+K−p
reaction we use the same expression but with a = −7.8 fm
(which already accounts for interference with the Coulomb
force [30]) and r = 2.79 fm with significant smaller er-
rors than in the Λp case. This simple prescription is accu-
rate to better than 10% in the region of energies relevant
here [31] compared to more elaborate formulas as, e.g., the
one given in ref. [32] and is therefore sufficiently accurate
for our purposes.

4 Results

First we show in fig. 4 the results for the π0π0Λ invari-
ant mass distribution of the pp → pK+π0π0Λ reaction
and the K−p mass distribution for the pp → pK+K−p
(dashed and solid lines, respectively) for an incident pro-
ton momentum of 3.7GeV which is the highest available
at COSY. This is also the nominal energy for protons of
the developing CSR facility at Lanzhou (China). The dif-
ferent shapes below the peak for the two reactions can be
understood from the presence of the Σ∗ propagator in the
pp → pK+π0π0Λ reaction, since only its quickly decreas-
ing tail enters in the evaluation of the matrix element.

Although the production rates with this model are of
the order of experimental cross-sections measured in the
pp→ ppK+K− reaction [25], other mechanisms can be at
play. In addition, we did not include the initial-state inter-
action that is expected to lead to a sizable reduction of the
cross-section [33], but would not modify the ratio of cross-
sections. Because of this we focus on the shape and relative
magnitude of our results that are model independent as
explained above. In an analogous way to what was stud-
ied in ref. [21] for the photoproduction case, we propose
to measure the ratio between the π0π0Λ and K−p mass
distributions of the pp→ pK+π0π0Λ and pp→ pK+K−p
reactions, respectively,

R ≡ dσpp→pK+π0π0Λ/dMπ0π0Λ

dσpp→pK+K−p/dMK−p
. (16)

2 Although the Jost function should not be used for the
extraction of scattering parameters from production reac-
tions [27], it still gives, for our case, a sufficiently accurate
parametrization for the effect of the final-state interaction [28].
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Fig. 4. Solid line: K−p invariant mass distribution for the
pp → pK+K−p reaction. Dashed line: π0π0Λ invariant mass
distribution of the pp→ pK+π0π0Λ reaction. Incident proton
momentum: 3.7GeV.

Up to phase space, FSI and known numerical factors,
the ratio R is proportional to (|TπΣ∗→πΣ∗ |/|TπΣ∗→K̄N |)2
which, at the Λ(1520) peak position, is (g1/g3)

2 = 2.8 (see
eq. (4)). With the full model, the value obtained for R at
the peak position is

R ∼ 0.5± 0.2. (17)

The uncertainty given comes from the errors of a and r
in eq. (15) when considering the FSI of the final baryons,
which is the largest source of uncertainty in our model.
Had we not considered the FSI we would have obtained
R ∼ 0.9. Actually, the effect of the FSI is to increase by
a factor of ∼ 3.6 the K−p mass distribution and a factor
∼ 2 the π0π0Λ mass distribution at the peak in the pp→
pK+K−p and pp → pK+π0π0Λ reactions, respectively.
These factors emerging from the final-state interactions
are strongly dependent on the beam energy.

An experimental measure of this ratio R would provide
a good test of the unitarized coupled-channel model since
the value of g1 and g3 are non-trivial genuine predictions
of this theory. Note that the close connection between the
nature of a resonance and its effective couplings to the
decay channels was derived already in ref. [34] for bound
states and extended to inelastic resonances in ref. [35].

5 Summary

We have studied some of the consequences and predic-
tions of a unitarized coupled-channel approach to the
Λ(1520)-resonance through the pp→ pK+K−p and pp→
pK+π0π0Λ reactions. The model relies upon a coupled-
channel formalism implementing unitarity through the
Bethe-Salpeter equation by means of which the resonance
structure appears naturally. One of the genuine predic-
tions of this theory are the values of the effective couplings
of the Λ(1520)-resonance to the relevant channels. We pro-
pose that the ratio between the π0π0Λ and K−p mass dis-
tributions for the pp → pK+π0π0Λ and pp → pK+K−p
reactions, respectively, can provide a test of the ratio
between the coupling of the Λ(1520)-resonance to the
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πΣ(1385) and to K̄N channels. Such a ratio would help
to unravel the nature of the Λ(1520) and its coupling to
meson-baryon components.
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Appendix A. Five- and four-body phase

space

Here we explain in detail the steps followed to simplify the
integrals of the phase space in the evaluation of the cross
section for the

p(q1)p(q2)→ p(p5)K
+(p4)π

0(p1)π
0(p2)Λ(p3) (A.1)

reaction (see fig. 2 for the detailed definition of the mo-
menta) with masses M1, M2, m5, m4, m1, m2 and m3,
respectively.

The cross-section for the process is given by

σ =
2SM1M2

√

s2 − 2s(M2
1 +M2

2 ) + (M2
1 −M2

2 )
2

×
∫

d3p1
(2π)3

∫

d3p2
(2π)3

∫

d3p3
(2π)3

∫

d3p4
(2π)3

∫

d3p5
(2π)3

× 1

2ω1

1

2ω2

m3

ω3

1

2ω4

m5

ω5

×(2π)4δ4(q1 + q2 −
∑

pi)|Amp|2, (A.2)

where S = 1/2 for the symmetry of π0π0 and pµi =
(ωi,pi).

The evaluation of the δ-function of energy conservation
for so many particles can be a difficult task. However, it
can be extremely simplified by using the following proce-
dure.

The quantity

A ≡
∫

d3p4
(2π)3

∫

d3p3
(2π)3

1

ω3ω4

×(2π)4δ4(q1 + q2 −
∑

pi)|Amp|2

=

∫

d3p4
(2π)3

1

ω3ω4

×(2π)δ(q01 + q02 −
∑

ωi)|Amp|2 (A.3)

is Lorentz invariant, hence we can evaluate it in any de-
sired frame. By convenience we choose a frame where
p3+p4 = 0. In this frame the δ-function of energy conser-
vation is simple since M 2

34 = (p3 + p4)
2 = (q1 + q2 − p1 −

p2−p5)2 = (q01 + q02−p01−p02−p05)2 and hence δ(q01 + q02−

p01−p02−ω3−ω4−p05) = δ(M34−
√

p24 +m2
3−
√

p24 +m2
4) is

only a function of |p4| and hence can be used to evaluate
the |p4| integral, which gives

A=

∫

d cos θ′4dφ
′
4|p′

4|
1

(2π)2
|p′

4|
M34

|Amp|2Θ(M34−m3−m4),

(A.4)
where |p′

4| = λ1/2(M2
34,m

2
3,m

2
4)/2M34 is the momentum

in the p3 + p4 = 0 frame.
The final expression for the cross-section is

σ =
SM1M2m3m5

4(2π)11
√

s2 − 2s(M2
1 +M2

2 ) + (M2
1 −M2

2 )
2

×
∫

d3p1

∫

d3p2

∫

d3p5

∫

d cos θ′4

∫

dφ′4

× |p′
4|

ω1ω2ω5M34
Θ(M34 −m3 −m4)|Amp|2. (A.5)

When evaluating the amplitude all the momenta have to
be evaluated in the overall CM frame, hence one has to
boost back the p′

4 momentum to this system with the
following expression:

p4 = p′
4 +

[(

P 0

M34
− 1

)

p′
4 ·P
|P|2 +

p′ 04
M34

]

P. (A.6)

with P = −p1 − p2 − p5 and P 0 =
√
s− p01 − p02 − p05.

The four-body phase space for the

p(q1)p(q2)→ p(p2)K
+(p4)K

−(p3)p(p1) (A.7)

reaction can be evaluated in an analogous way to the pre-
vious one and gives

σ =
SM1M2m1m2

2(2π)8
√

s2 − 2s(M2
1 +M2

2 ) + (M2
1 −M2

2 )
2

×
∫

d3p1

∫

d3p2

∫

d cos θ′4

∫

dφ′4
|p′

4|
ω1ω2M34

×Θ(M34 −m3 −m4)|Amp|2, (A.8)

where S = 1/2 since the final protons are identical parti-
cles. The boost of p′4 to the overall CM frame is done with
eq. (A.6) but now P = −p1 − p2 and P 0 =

√
s− p01 − p02.

Appendix B. Alternative derivation of the

amplitudes

Here we explain in detail the analytic evaluation of the
amplitudes for the pp → pK+π0π0Λ and pp → pK+K−p
reactions within the method of irreducible tensors, which
is more familiar to many readers than the technique de-
scribed in the main text.

Let us start by determining the allowed quantum num-
bers of the initial and final states, which are independent
of the internal mechanisms, which will be of help in simpli-
fying the evaluation of the amplitudes later on. Let us con-
sider the general process pp→ K+pΛ(1520). Since the re-
action is calculated at energies close to threshold, the only
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final total angular momentum allowed is L = 0. Hence the
final JP possibilities are 1+ or 2+, since JP (K+) = 0−,
JP (p) = 1/2+ and JP (Λ(1520)) = 3/2−. The spin of the
initial pp pair can be 0 or 1 while L has to be even for
parity reasons. But, since the initial protons are identical
fermions, L+S+ I has to be odd. And, since, I = 1, then
L+S has to be even. Hence the only possibility to match
final 1+ or 2+ is that the initial protons are in L = 2 and
S = 0. In summary, the initial pp state has the following
quantum numbers: L = 2, S = 0, P = +, independent of
the internal dynamics and the Λ(1520) decay products.

Let us consider now the quantum numbers of the pΛ
system in the pp → pK+(Λ(1520)) → pK+(π0Σ∗) →
pK+(π0π0Λ) reaction. Considering the parity of the final
particles and the fact that the Λ(1520) decay into πΣ∗ is
in s-wave and the decay of the Σ∗ into πΛ is in p-wave,
the angular momentum of the pΛ system has to be even to
match the global parity +. Given the typical momenta of
the final Λ at the energies of concern in the present work,
the only possibility is L(pΛ) = 0. On the other hand, the
spin of the pΛ system has to be S(pΛ) = 1 in order to give
total J = 2 when combined to the p-wave of the Σ∗ → πΛ
decay in line with the formalism as described in the main
text.

Regarding the pp→ pK+(Λ(1520))→ pK+(K−p) re-
action, the kinematics of the pp final state is that the pro-
ton coming from the Λ(1520) decay has about 240MeV/c
momenta since the Λ(1520) is produced essentially at rest,
and the other proton is also basically at rest in the to-
tal CM frame. This gives the protons a kinetic energy of
about 8MeV in their CM frame where only relative S-
waves are relevant. Hence, the final pp system only can
be in L(pp) = 0 at the energies considered. On the other
hand, the spin is S(pp) = 0 since L+S+ I has to be odd.

Let us evaluate the amplitude for the pp→ pK+π0π0Λ
reaction of fig. 2. The amplitude for the vertex pK+K−p
is given by [2]

−it = −i 1

2f2
(p04 − k0). (B.1)

The unitarized K̄N → πΣ∗ transition has the following
form [20]:

−itK−p→π0Σ∗0 = −i 1√
2

(−1)√
3
TK̄N→πΣ∗

×C
(

1

2
2
3

2
;−m,M +m

)

×Y2,−m−M (k̂)(−1)M+m
√
4π , (B.2)

where C are Clebsch-Gordan coefficients. For the decay of
the Σ∗ into π0Λ, the vertex is [36]

−it = −fΣ∗πΛ

mπ

〈

1

2
m′′|S · p2|

3

2
M

〉

, (B.3)

where fΣ∗πΛ/mπ = 9.61× 10−3MeV−1 and S is the total
spin 3/2 to 1/2 transition operator given by:

S · p =







−px+ipy√
2

√

2
3pz

px−ipy√
6

0

0 −px+ipy√
6

√

2
3pz

px−ipy√
2






. (B.4)

Hence, the full amplitude is given by

t= i
1

2f2
(p04−k0)

1

k2 −m2
K

1√
sΣ∗ −MΣ∗ + iΓΣ∗(

√
sΣ∗)/2

×fΣ∗πΛ

mπ

1√
6
TK̄N→πΣ∗ C

(

1

2
2
3

2
;−m,M +m

)

×Y2,−m−M (k̂)(−1)M+m
√
4π

〈

1

2
m′′|S · p2|

3

2
M

〉

×δm′,mδM,−m, (B.5)

where sΣ∗ = (p2 + p3)
2.

Since the momentum of the exchanged kaon is approx-
imately equal to the incoming proton momentum, we can
do the following approximation:

Y2,−m−M (k̂) ' Y2,−m−M (ûz) =

√

5

4π
. (B.6)

On the other hand, the spin of the initial pp system
is S(pp) = 0 (antisymmetric) and the spin of the final
pΛ system is S(pΛ) = 1 (symmetric), as discussed above.
Therefore, the initial spin wave function has to be anti-
symmetrized and the final pΛ spin wave function has to
be symmetrized. Let us consider only the spin-dependent
part of eq. (B.5). The antisymmetrization of the initial
spin gives

1√
2

[

C
(

1

2
2
3

2
;−1

2
0

)〈

1

2
m′′|S · p2|

3

2
− 1

2

〉

δm′,+1/2

− C
(

1

2
2
3

2
;+

1

2
0

)〈

1

2
m′′|S · p2|

3

2
+

1

2

〉

δm′,−1/2

]

=
1√
2

√

2

5

[〈

1

2
m′′|S · p2|

3

2
− 1

2

〉

δm′,+1/2

+

〈

1

2
m′′|S · p2|

3

2
+

1

2

〉

δm′,−1/2

]

. (B.7)

Now we have to symmetrize the latter expression for
the final pΛ spin. For Sz(pΛ) = 0 it gives

1√
2

1√
2

√

2

5

[〈

1

2
− 1

2
|S · p2|

3

2
− 1

2

〉

+ 0

+ 0 +

〈

1

2
+

1

2
|S · p2|

3

2
+

1

2

〉]

=

√

2

5

√

2

3
p2z, (B.8)
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for Sz(pΛ) = −1:

1√
2

√

2

5

[

0 +

〈

1

2
− 1

2
|S · p2|

3

2
+

1

2

〉]

= − 1√
5

1√
6
(p2x + ip2y), (B.9)

and for Sz(pΛ) = +1:

1√
2

√

2

5

[〈

1

2
+

1

2
|S · p2|

3

2
− 1

2

〉

+ 0

]

=
1√
5

1√
6
(p2x − ip2y). (B.10)

Hence, the final expression for the amplitude is

t = −i1
3

1

2f2
(p04 − k0)

1

k2 −m2
k

× 1√
sΣ∗ −MΣ∗ + iΓΣ∗(

√
sΣ∗)/2

fΣ∗πΛ

mπ

×TK̄N→πΣ∗











√
2p′2z Sz = 0

1
2 (p

′
2x − ip′2y) Sz = +1

− 1
2 (p

′
2x + ip′2y) Sz = −1











(B.11)

and the symmetrization of the identical pions has to be
considered by adding, for each Sz, the amplitude changing
p1 ↔ p2.

For the evaluation of the pp → pK+K−p amplitude
we need the unitarized K−p → K−p amplitude which is
given by

−itK−p→K−p=−i
1

2
TK̄N→K̄N

∑

M

C
(

1

2
2
3

2
;−m,M+m

)

×Y2,−m−M (k̂)C
(

1

2
2
3

2
;m′′,M −m′′

)

×Y ∗
2,m′′−M (p̂3)(−1)m

′′+m4π. (B.12)

The rest of the procedure is analogous to the previous
case but now the final pp spin is S(pp) = 0, as discussed
above, which is antisymmetric and hence we have now to
antisymmetrize the final pp spin wave function.

The final expression of the amplitude is given by

t(p1, p2) =
1

2f2
(p04−k0)

1

k2 −m2
k

1

2
(3 cos2 θ3−1)TK̄N→K̄N ,

(B.13)
where the symmetry of the final pp space wave function
has to be considered by adding to the amplitude the same
expression changing p1 ↔ p2.
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